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We show that a system of spinless Fermi particles, localized on the sites of the Bethe lattice with coordination number z and 
interacting through a repulsive nearest-neighbor interaction, exhibits a phase transition to a charge-ordered state. The 
phase diagram in the n-T plane is derived. Relevant thermodynamic quantities, such as the free energy, the specific heat, 
the entropy and the compressibility are analyzed in detail. 
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1. Introduction 
 
A system of spinless Fermi particles, localized on the 

sites of the Bethe lattice with coordination number z and 
interacting through an attractive nearest-neighbor 
interaction V, has been exactly solved [1] by means of the 
equations of motion approach [2]. This system is shown to 
be isomorphic to a spin-1/2 ferromagnetic Ising model in 
an external magnetic field. A complete set of 
eigenoperators has been found together with the 
corresponding eigenvalues. Then, Green’s and correlation 
functions have been determined and the relevant 
thermodynamic quantities have been studied in detail. The 
phase diagram has been obtained by fixing the particle 
density n, the nearest-neighbor interaction V and the 
temperature T as external thermodynamic parameters and 
allowing the system to respond by adjusting the chemical 
potential μ [1]. We found the existence of a critical 
temperature below which there is a spontaneous 
breakdown of the particle-hole symmetry and the system 
is unstable against the formation of inhomogeneous 
phases.  

In this paper, we study the case of repulsive nearest-
neighbor interaction V and show that a phase transition to 
a charge ordered state takes place. This case corresponds 
to the spin-1/2 Ising model in a magnetic field with an 
antiferromagnetic coupling. This system has already been 
investigated on the Bethe lattice with coordination number 
z [3-8] and an exact solution has been found, whose 
equivalence to the Bethe approximation has also been 
shown. In all these approaches statistical methods, such as 
the matrix transfer method and iteration techniques, have 
been used. In the fermionic version of the model we use 
quantum field techniques [9], based on the use of the 
equation of motion method and algebraic properties of the 
field operators. By using such a formalism, in a series of 
works [9] we have shown that there is a large class of 
fermionic systems for which it is possible to find, for any 
dimension, a finite closed set of eigenoperators and 

eigenvalues of the Hamiltonian. Then, the hierarchy of the 
equations of motion closes and analytical exact 
expressions for the Green’s functions are obtained in 
terms of a finite number of parameters, to be self-
consistently determined.  

By using this formalism, we study the model by 
looking for a solution where the translational invariance is 
spontaneously broken and a charge ordered state, 
thermodinamically stable, is formed below a critical 
temperature. We obtain the phase diagram in the n-T 
plane. Relevant thermodynamic quantities, such as the free 
energy, the specific heat, the entropy and the 
compressibility are analyzed in detail focusing, for the 
sake of simplicity, on the particular case z=3. 

 
 
2. Model Hamiltonian and inhomogeneous  
    solution  
 
Let us consider a system of spinless fermionic fields, 

localized on a lattice and interacting by a two-body 
intersite potential. The corresponding Hamiltonian is 
given by: 

  1( ) ( ) ( )
2

H n i V n i n jμ
≠

= − +∑ ∑ ij
i i j

,              (2.1) 

 
where †( ) ( ) ( )n i c i c i=  is the charge density operator, c(i) 

†( ( ))c i  is the fermionic annihilation (creation) operator, 
satisfying canonical anti-commutation relations. We use 
the Heisenberg picture: ( , )i t= i , where i stays for the 
lattice vector iR . μ  is the chemical potential. We shall 
study this model on the Bethe lattice with coordination 
number z and consider only nearest neighbor interactions. 
Then, Hamiltonian (2.1) can be written as 
 

1( ) ( ) ( )
2i i

H n i zV n i n iαμ= − +∑ ∑ ,               (2.2) 
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where  

 
1

1( ) ( )
z

p
p

n i n i
z

α

=

= ∑ ,                      (2.3) 

 
( 1, )pi p z= L  being the nearest neighbor of site i. We 

shall solve the Hamiltonian (2.2) with the following 
boundary conditions: 
 

 1

2

( )
n i even shell

n i
n i odd shell

∈⎧
= ⎨ ∈⎩

        (2.4) 

 

 1 2
1 1( ) ( )

2i
n n i n n

N
= < > = +∑ ,         (2.5) 

 
that is, we shall investigate the existence of an 
inhomogeneous solution. Here N is the number of the 
sites. To such an extent, let us take two distinct sites i and 
j, and consider the two representations 
 

 
( ) ( )
0

( ) ( , )
( ) ( )

a a
I

a
I

H H H
a i j

H zVn i n iα

= +
=

=
.     (2.6) 

 
Let us observe that for any operator O, the thermal 
average { }/ { }H HO Tr Oe Tr eβ β− −< >=  can be expressed as 
 

   
( )

( )

a
I

a
I

H
a

H
a

Oe
O

e

β

β

−

−

< >
< >=

< >
,         (2.7) 

 
where the symbol   <L>a  stands for the trace with respect 
to the reduced Hamiltonian ( )

0
aH  

 

 
  
<L>a=

Tr{Le−βH0
(a)

}
Tr{e−βH0

(a )

}
(a = i, j).   (2.8) 

 
By using the algebraic property of the particle operator 
[ ( )] ( )mn i n i= , we can write 
 

 
( )

1

[1 ( ) ( )]
a

I

z
H

p
p

e An a n aβ−

=

= +∏ ,         (2.9) 

 
where 1VA e β−= − . Then, by using the property of the 

( )
0

aH -representation, we obtain: 
 
 

( )

( ) 1 [(1 ) 1] ( )
a

IH z
a a ae AX n aβ−< > = + + − < >   (2.10) 

 
where we put: 

 1 2( ) ( ) ( )a a a z aX n a n a n a=< > =< > = =< >L   
(2.11) 

 
In the ( )

0
aH  -representation c(a) satisfies the equation of 

motion 

 ( ) ( )i c a c a
t
∂ μ
∂

= − ,                     (2.12) 

 
which immediately tell us that 

 1( )
1an a

e βμ−< > =
+

.                         (2.13) 

 
 

By noting that 
 

( )

( ) ( ) (1 )
a

IH z
a a an a e n a AXβ−< > =< > + ,  (2.14) 

 
 

( ) 1( ) (1 ( ) ) (1 ) ( ) [1 ]
a

IH z
p a a a a a an a e X n a A n a X AXβ− −< > = − < > + + < > + ,           

(2.15) 
 

we have 

 
( ) (1 )

( )
1 [(1 ) 1] ( )

z
a a

z
a a

n a AX
n a

AX n a
< > +

< >=
+ + − < >

,        (2.16) 

 
 

1(1 ( ) ) (1 ) ( ) [1 ]
( )

1 [(1 ) 1] ( )

z
a a a a a

p z
a a

X n a A n a X AX
n a

AX n a

−− < > + + < > +
< >=

+ + − < >
.   

(2.17) 
 

By taking pj i=  and imposing the boundary 
conditions (2.4), we obtain the following equations: 

 
  

1

1

(1 ) [ (1 ) ] [ (1 ) ] [ (1 )(1 ) ]
(1 ) [ (1 ) ] [ (1 ) ] [ (1 )(1 ) ],

z z z z

z z z z

AX e AY e AX Y e A AY
AY e AX e AY X e A AX

β βμ βμ

β βμ βμ

− μ − − −

− μ − − −

+ + + = + + + + +

+ + + = + + + + +

         (2.18) 
 

where for simplicity we have define iX X=  and jY X= . 
Numerical and analytical studies show that these equations 
are redundant. By eliminating unphysical (i.e., complex 
and divergent) solutions,  Eqs. (2.18) take the simpler 
form 
 

 
1

1

(1 )(1 )
(1 )(1 ) .

z

z

Y AX e Y
X AY e X

βμ

βμ

− −

− −

− + =

− + =
           (2.19) 

 
These equations will fix the two parameters X  and Y, 

while the values of the particle density are given by: 
 

 
1

2

(1 )( )
(1 )

(1 )( ) .
(1 )

z

z

z

p z

AXn n i
e AX

AYn n i
e AY

βμ

βμ

−

−

+
=< >=

+ +

+
=< >=

+ +

                (2.20) 

 
Equations similar to (2.19) have been previously 

derived in the context of the spin-1/2 Ising model [3]. The 
correspondence between the notations is:  
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22

22

2( ) 4 .

JJ

JJ

ee YX
l el e

h zJ V J

ββ

ββ
βα

μ

−−

−−
==

++
= − = −

        (2.21) 

 
It is worthwhile to notice that the parameters lα  and 

lβ , introduced in Ref. [3], do not have a direct physical 
meaning, whereas the  parameters X and Y are particle 
density expectation values in the ( )

0
aH -representation. 

The set of equations (2.19) contains as unknown 
parameter the chemical potential μ . This quantity can be 
determined by means of the self-consistent equation 

 

 1 2
1 ( ) ,
2

n n n= +                        (2.22) 

 
where 1n  and 2n  can be computed by means of Eq. 
(2.20). As a result, we have a set of three coupled 
equations, (2.19) and (2.22), which will fix the internal 
parameters X, Y and μ  in terms of the external parameters 
z, n, T and V. Once the internal parameters are known, all 
the physical quantities of the system can be calculated, as 
it will be shown in the next Sections.  
 

3. Study of the phase diagram 
 

In this Section we shall look for solutions of Eqs. 
(2.19) in order to study the phase diagram of the system 
and then the relevant thermodynamic quantities. We shall 
focus on the z=3 case and show how non-trivial physical 
consequences arise already in such a simple case. For a 
general value of μ , let us notice that the set of equations 
(2.19) can be factorized as: 

 

 2(1 )(1 ) 0
X Y

X AX GX
=⎧

⎨
− + − =⎩

                 (3.1) 

 

 2

2

1 (2 )
( 1)

0

G A AXY
A X

aX bX c

+ + +⎧ =⎪ −⎨
⎪ + + =⎩

                          (3.2) 

 
where βμ−= eG  and we have defined 
 

 

( )

( ) ( )

( )

22

2

2

2 1

2 2 1 2

2 1 .

a A A G

b A A A G

c A G

⎡ ⎤= + +⎣ ⎦
⎡ ⎤= + + +⎣ ⎦

= + +

                (3.3) 

 
The first set (3.1) corresponds to the homogeneous 

solution (i.e., ( )n i< >  does not depend on the site) and 
has been already studied in our previous works [1]. 
Therefore, we shall concentrate the attention on the second 
set (3.2), which gives the following solution: 

  

2

2

4
2

4 .
2

b b acX
a

b b acY
a

⎧ − − −
=⎪

⎪
⎨

− + −⎪
=⎪⎩

          (3.4) 

Let us concentrate on the quantity 2 4Q b ac= − , 
which depends on the parameters V, T and μ . When V<0, 
we find that Q is always negative; that is, for attractive 
intersite interaction there is no inhomogeneous phase. On 
the other hand, for V>0 there exists a region in the 
parameter space where Q>0 and, thus, an inhomogeneous 
solution does exist. A numerical study of the condition 
Q>0 gives the phase diagram of the system. We would 
like to stress here that the external thermodynamic 
parameters are n and T (we take as unit of energy V=1) 
and the system responses to their variation by adjusting 
the chemical potential. Since n and μ−  are conjugated 
variables, it is physically meaningful to fix n and then 
determine μ  by means of the self-consistent equation 
(2.22). A numerical study of the condition Q>0 gives the 
phase diagram in the (n,T)-plane, as shown in Fig. 1. 
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Fig. 1 Phase Diagram in the (n,T)-plane. 
 
 
 Let us observe that at zero temperature the critical 
values of n are 1/3 and 2/3. Below the curve the system is 
stable and a charge ordered state is established, while for 

cT T>  a transition to the homogeneous phase takes place. 
This result is well confirmed by the behavior of different 
physical quantities computed in the next Section. 
 
 

4. Thermodynamic quantities 
 
The aim of this Section is to study the relevant 

thermodynamic quantities. Let us start from the internal 
energy per site, which has the expression: 

 

 1( ) ( ) ( )
2

E T H zV n i n i
N

α=< >= < >∑
i

.      (4.1) 
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The correlation function ( ) ( )n i n iα< >  is obviously 
independent on the site and can be calculated by means of 
Eqs. (2.7), (2.9) and (2.19). Thus, we obtain 
 

 1 (1 )( )
2 1

A XYE T zV
AXY

+
=

+
.         (4.2) 

 
Given the internal energy (4.2) , we can calculate the 
specific heat C(T)  
 

 ( )( ) dE TC T
dT

= ,                    (4.3) 

 
and the Helmholtz free energy 
 

 
2

*

( ) ( *)( ) ( *) ,
T

T

E T E TF T E T T dT
T
−

= − ∫
%

%
%

   (4.4) 

 
where the limit * 0T →  is understood; the entropy 

( ) ( )S T E F T= −  follows immediately. The thermal 
compressibility Tκ can be computed as: 
 

 
2

1 .T dn
dn

κ =
μ

                              (4.5) 

 
In Fig. 2 we show the chemical potential µ as a 

function of the particle density n for different values of the 
temperature T. The chemical potential is an increasing 
function of n, showing that the inhomogeneous phase is 
thermodynamically stable. As required by the particle-hole 
symmetry, μ  satisfies the relation (1 ) ( )n zV nμ μ− = − . 
At T=0, µ takes the following values 

 
0 0 0.5
3 / 2 0.5
3 0.5 1 .

n
V n
V n

≤ <⎧
⎪μ = =⎨
⎪ < ≤⎩

 

 
In the region 0 0.5n≤ <  the repulsive intersite 

interaction disfavors the occupation of contiguous shells: 
only the even (odd) shells are occupied. The chemical 
potential takes the value 0μ =  because there is no cost in 
energy to add one electron. At n=0.5 all even (odd) shells 
are occupied and all odd (even) shells are empty: that is, a 
checkerboard order is established. By increasing n, 
because of the Pauli principle, contiguous shells start to be 
occupied; in the region 0.5 1n< ≤  the cost in energy to 
add one electron is zV. The behavior at n=0.5 is shown in 
Fig. 3, where the particle densities 1n  and 2n  are plotted 
as a function of the temperature. We see that at T=0, 

1 1n = and 2 0n = , signaling the presence of a checkerboard 
structure. 
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Fig. 2. The chemical potential μ  is plotted as a function 
of the particle density n at various temperatures. 
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Fig. 3. The particle densities on the even and odd shells, 
1n  and 2n , are given as a function of the temperature at  

                                              n=0.5. 
 
 

In Fig. 4 we plot the particle densities 1n  and 2n  as 
function of the total particle density n at several values of 
the temperature T. The regions inside the closed curves 
denote the inhomogeneous phase. When the temperature 
increases the area inside the curves shrinks and, at the 
critical temperature, there is a transition to the 
homogeneous disordered phase characterized by 

1 2n n n= =  and described by the straight line in Fig. 4. 
The difference in the free energy hom inhomF F FΔ = −  

between the homogeneous and inhomogeneous phases is 
shown in Fig. 5 as a function of the particle density at 
various temperatures. We see that the inhomogeneous 
phase, when present, is always energetically favored. 
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Fig. 4. The particle densities 1n  and 2n , as functions of 

the total density n at various temperatures. 
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Fig. 5. The free energy difference hom inhomF F FΔ = −  is 
plotted as a function of the particle density at various 

temperatures. 
 
 

In Fig. 6 we report the behavior of the specific heat C 
as a function of the temperature for n=0.4 and n=0.5. 
Owing to the particle-hole symmetry, the specific heat is 
invariant under the transformation 1n n→ − . We observe 
a jump in correspondence of the critical temperature, a 
clear signature of a second order phase transition. 
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Fig. 6 The specific heat C is plotted as a function of the 

temperature T at n=0.4, 0.5. 
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Fig. 7 The derivative of the particle density with respect 
to the chemical potential is plotted as a function of n for  
                                      T=0.1, 0.2, 0.4. 

 
 

In Fig. 7 we study the thermal compressibility; we 
report the behavior of the derivative of the particle density 
with respect to the chemical potential as a function of n for 
some values of the temperature. We observe a jump in 
correspondence of the critical values of n, where the 
inhomogeneous phase establishes, in agreement with the 
phase diagram shown in Fig. 1. By increasing T, the height 
of the peaks decreases and the corresponding position 
moves towards n=0.5. At zero temperature the 
compressibility vanishes at n=0.5, where the checkerboard 
phase is observed. 

Finally, the entropy S as a function of the particle 
density for various values of the temperature is shown in 
Fig. 8, and its temperature dependence is reported in Fig. 9 
for n=0.4 and n=0.5. As expected, the entropy is lower in 
the region of n where a charge ordered state is observed. 
As a function of the temperature, the entropy exhibits a 
drastic change in correspondence of the critical 
temperature, in agreement with the results shown in Fig. 6 
for the specific heat. This is another signature of a second 
order phase transition. 
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Fig. 8. The entropy S is plotted as a function the particle 
density for various values of the temperature. 
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Fig. 9. The entropy S is plotted against the temperature 
for n=0.4 and n=0.5. 

 
 
 

5. Concluding Remarks 
 
In this paper we have obtained the phase diagram at 

finite temperature of a system of spinless fermions, 
localized on the sites of the Bethe lattice, interacting 
through a repulsive nearest-neighbor potential. We have 
investigated the possibility of a spontaneous breakdown of 
the translational invariance and we have found that, below 
a critical temperature, a transition towards a 
thermodinamically stable charge ordered state occurs. The 
obtained phase diagram is well supported by the behavior 
of different physical quantities. Indeed, both the specific 
heat and the thermal compressibility present a jump in 
correspondence of the critical temperature and of the 

critical values of n, respectively. Furthermore, the 
behavior of the free energy and of the entropy clearly 
indicates that the inhomogeneous phase is always 
energetically favored. 

 
 
References 

 
[1] F. Mancini, A. Naddeo, Phys. Rev. E 74, 061108  
      (2006); F. Mancini and A. Naddeo, Physica  
       C (2007) in print. 
[2] F. Mancini, A. Avella, Eur. Phys. J. B 36, 37 (2003);  
      F. Mancini, A. Avella, Adv. Phys. 53, 537 (2004). 
[3] S. Katsura, M. Takizawa, Prog. Theor. Phys.  
      51, 82 (1974). 
[4] E. Muller-Hartmann, J. Zittarz, Z. Phys.  
      B 22, 59 (1975). 
[5] C. J. Thompson, J. Stat. Phys. 27, 441 (1982). 
[6] M. Kaufman, M. Kahana, Phys. Rev.  
      B 37, 7638 (1988). 
[7] C. Ekiz, Phys. Lett. A 327, 374 (2004). 
[8] David A. Huckaby, Dale A. Huckaby, Rom. J. Phys.  
       50, 453 (2005).  
[9] F. Mancini, Europhys. Lett. 70, 484 (2005); Eur. Phys.  
      J. B 45, 497 (2005); Eur. Phys. J. B 47, 5 (2005);  
      Cond. Matt. Phys. 9, 393 (2006). 
 
 
 
 
____________________________ 
*Corresponding author: naddeo@sa.infn.it 

 


