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Inhomogeneous charge ordering of a spinless fermionic

system on the Bethe Lattice
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We show that a system of spinless Fermi particles, localized on the sites of the Bethe lattice with coordination number z and
interacting through a repulsive nearest-neighbor interaction, exhibits a phase transition to a charge-ordered state. The
phase diagram in the n-T plane is derived. Relevant thermodynamic quantities, such as the free energy, the specific heat,

the entropy and the compressibility are analyzed in detail.
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1. Introduction

A system of spinless Fermi particles, localized on the
sites of the Bethe lattice with coordination number z and
interacting through an attractive nearest-neighbor
interaction V, has been exactly solved [1] by means of the
equations of motion approach [2]. This system is shown to
be isomorphic to a spin-1/2 ferromagnetic Ising model in
an external magnetic field. A complete set of
eigenoperators has been found together with the
corresponding eigenvalues. Then, Green’s and correlation
functions have been determined and the relevant
thermodynamic quantities have been studied in detail. The
phase diagram has been obtained by fixing the particle
density n, the nearest-neighbor interaction V and the
temperature T as external thermodynamic parameters and
allowing the system to respond by adjusting the chemical
potential 2z [1]. We found the existence of a critical

temperature below which there is a spontaneous
breakdown of the particle-hole symmetry and the system
is unstable against the formation of inhomogeneous
phases.

In this paper, we study the case of repulsive nearest-
neighbor interaction V and show that a phase transition to
a charge ordered state takes place. This case corresponds
to the spin-1/2 Ising model in a magnetic field with an
antiferromagnetic coupling. This system has already been
investigated on the Bethe lattice with coordination number
z [3-8] and an exact solution has been found, whose
equivalence to the Bethe approximation has also been
shown. In all these approaches statistical methods, such as
the matrix transfer method and iteration techniques, have
been used. In the fermionic version of the model we use
qguantum field techniques [9], based on the use of the
equation of motion method and algebraic properties of the
field operators. By using such a formalism, in a series of
works [9] we have shown that there is a large class of
fermionic systems for which it is possible to find, for any
dimension, a finite closed set of eigenoperators and

eigenvalues of the Hamiltonian. Then, the hierarchy of the
equations of motion closes and analytical exact
expressions for the Green’s functions are obtained in
terms of a finite number of parameters, to be self-
consistently determined.

By using this formalism, we study the model by
looking for a solution where the translational invariance is
spontaneously broken and a charge ordered state,
thermodinamically stable, is formed below a critical
temperature. We obtain the phase diagram in the n-T
plane. Relevant thermodynamic quantities, such as the free
energy, the specific heat, the entropy and the
compressibility are analyzed in detail focusing, for the
sake of simplicity, on the particular case z=3.

2. Model Hamiltonian and inhomogeneous
solution

Let us consider a system of spinless fermionic fields,
localized on a lattice and interacting by a two-body
intersite potential. The corresponding Hamiltonian is
given by:

H :‘”Z n(i)+%z V,n@n(j) » (2.1)

i#]

where n(i) =c'(i)c(i) is the charge density operator, c(i)
(c'(i)) is the fermionic annihilation (creation) operator,
satisfying canonical anti-commutation relations. We use
the Heisenberg picture: i=(i,t), where i stays for the
lattice vector R,. u is the chemical potential. We shall

study this model on the Bethe lattice with coordination
number z and consider only nearest neighbor interactions.
Then, Hamiltonian (2.1) can be written as

H=-uy. n(i)+%zvz n(iyn“ (i) 2.2)
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where
n“(i):% Z n(i,), (2.3)

p=1

i, (p=1---z) being the nearest neighbor of site i. We

shall solve the Hamiltonian (2.2) with the following
boundary conditions:

n, ieevenshell
n, ieodd shell

(0)=1 .4

nz%zik n(i)>=%(n1+n2), (2.5)

that is, we shall investigate the existence of an
inhomogeneous solution. Here N is the number of the
sites. To such an extent, let us take two distinct sites i and
j, and consider the two representations

H=H®+H® .
@ e (a=i,j). (2.6)
H,® =zvn(i)n“ (i)

Let us observe that for any operator O, the thermal
average <O >=Tr{Oe”"}/Tr{e”"} can be expressed as

— (a)
<Qe P >

<0>= 2, (2.7)

-HY

<e .

where the symbol <--->_ stands for the trace with respect
to the reduced Hamiltonian H{®

_ pH@
Tr{-.e 7
>a= Q)

. (@=1ij). 28
Tr{e™™ }

By using the algebraic property of the particle operator
[n@)]™ =n(i) , we can write

z

=[] +An(@)n(@,)]l,  (2.9)

p=

Ll

where A=e —1. Then, by using the property of the
H{® -representation, we obtain:

<e 5 =4[+ AX,) -1 <n(@) >, (2.10)
where we put:
X, =<n(a) >,=<n(a,) >,=--=<n(a,) >,

2.11)

In the H{® -representation c(a) satisfies the equation of
motion

i c(a)=—uc(a),

2.12
o (212)
which immediately tell us that
1
<n(@)>,=———. 2.13
@)>= 5 (2.13)
By noting that
<n@e”™” > =<n(a) >, (L+AX,)’, (2.14)

<n(a,)e ™" >,= X, (- <n(@) >,)+ L+ A) <n(@) >, X,[L+AX, I

(2.15)
we have

<n(a) >= <n(a) >, @+ AX,) e

1+[(1+ AX,)* 1] <n(a) >,
<n(a,) oo Xalo <@ 2,)+ A+ A) <n(@) >, X[+ AX, ]

P 1+ AX,)' ~1] <n(a) >,
(2.17)
By taking j= ip and imposing the boundary

conditions (2.4), we obtain the following equations:

1L+ AX) [e™ + @A+ AY) ] =[e™ + 1+ AX )’ IY[e™™ + A+ A) @+ AY)]
@+ AY) [e™ + A+ AX) ] =[e™ + @+ AY) IX[e™ + (1+ A)(L+ AX)™],
(2.18)

where for simplicity we have define X =X; and Y =X, .

Numerical and analytical studies show that these equations
are redundant. By eliminating unphysical (i.e., complex
and divergent) solutions, Egs. (2.18) take the simpler
form

(1-Y)A+ AX) Tt =e Y

(2.19)
(L- X)L+ AY) =X,

These equations will fix the two parameters X and Y,
while the values of the particle density are given by:

n1 =< n(|) >= _(:LLX)ZZ
e 4+ 1+ AX) (2.20)
n, =< n(ip) o (l+ AY)Z

e M+ (1+AY)

Equations similar to (2.19) have been previously
derived in the context of the spin-1/2 Ising model [3]. The
correspondence between the notations is:
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o 2h) ~ o 28
S e Sl +e?” (2.21)
u=2(h-2J) V=-4].

It is worthwhile to notice that the parameters |, and
l,, introduced in Ref. [3], do not have a direct physical
meaning, whereas the parameters X and Y are particle
density expectation values in the H(® -representation.

The set of equations (2.19) contains as unknown
parameter the chemical potential . This quantity can be

determined by means of the self-consistent equation

n=%(n1+n2), (2.22)

where n, and n, can be computed by means of Eq.

(2.20). As a result, we have a set of three coupled
equations, (2.19) and (2.22), which will fix the internal
parameters X, Y and g in terms of the external parameters

z, n, T and V. Once the internal parameters are known, all
the physical quantities of the system can be calculated, as
it will be shown in the next Sections.

3. Study of the phase diagram

In this Section we shall look for solutions of Egs.
(2.19) in order to study the phase diagram of the system
and then the relevant thermodynamic quantities. We shall
focus on the z=3 case and show how non-trivial physical
consequences arise already in such a simple case. For a
general value of u, let us notice that the set of equations

(2.19) can be factorized as:

x=Y 3.1
{(1—X)(1+AX)2—GX =0 G

_1+G+ A2+ AX)
A (X -1) (3.2)
aX’+bX +c=0

where G =e ™ and we have defined

a=2A°[(1+A)' +G]
b=2A[2(1+A)" +(2+ A)G] (33)
c=2(1+A+G)".

The first set (3.1) corresponds to the homogeneous

solution (i.e., <n(i)> does not depend on the site) and

has been already studied in our previous works [1].
Therefore, we shall concentrate the attention on the second
set (3.2), which gives the following solution:

_—b-+b*-dac

X 2
a
(3.4)
v - —b++/b? —4ac
- 2a '

Let us concentrate on the quantityQ =h®—4ac,
which depends on the parameters V, T and « . When V<0,

we find that Q is always negative; that is, for attractive
intersite interaction there is no inhomogeneous phase. On
the other hand, for V>0 there exists a region in the
parameter space where Q>0 and, thus, an inhomogeneous
solution does exist. A numerical study of the condition
Q>0 gives the phase diagram of the system. We would
like to stress here that the external thermodynamic
parameters are n and T (we take as unit of energy V=1)
and the system responses to their variation by adjusting
the chemical potential. Since n and —x are conjugated

variables, it is physically meaningful to fix n and then
determine x by means of the self-consistent equation

(2.22). A numerical study of the condition Q>0 gives the
phase diagram in the (n,T)-plane, as shown in Fig. 1.
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Fig. 1 Phase Diagram in the (n,T)-plane.

Let us observe that at zero temperature the critical
values of n are 1/3 and 2/3. Below the curve the system is
stable and a charge ordered state is established, while for
T >T, atransition to the homogeneous phase takes place.
This result is well confirmed by the behavior of different
physical quantities computed in the next Section.

4. Thermodynamic quantities
The aim of this Section is to study the relevant

thermodynamic quantities. Let us start from the internal
energy per site, which has the expression:

E(T)=<H >Z%ZVZ< n@n“@)>. (4.1)
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The correlation function <n(i)n“(i)> is obviously

independent on the site and can be calculated by means of
Egs. (2.7), (2.9) and (2.19). Thus, we obtain

L+ AXY

4.2
1+ AXY (42)

E(I')_— AR AR AL

Given the internal energy (4.2) , we can calculate the

specific heat C(T)

c(m) :%, (4.3)

and the Helmholtz free energy

F(T)= E(T*)_T‘T[ wdf (4.4

where the limit T*—0
S(M)=(E-F)T follows
compressibility x" can be computed as:

is understood; the entropy
immediately. The thermal

K=l on (4.5)

In Fig. 2 we show the chemical potential p as a
function of the particle density n for different values of the
temperature T. The chemical potential is an increasing
function of n, showing that the inhomogeneous phase is
thermodynamically stable. As required by the particle-hole
symmetry, ¢ satisfies the relation x(1—n)=2zV — u(n).

At T=0, p takes the following values

0 0<n<05
u=43vV/2 n=0.5
KV 0.5<n<1.

In the region 0<n<0.5 the repulsive intersite
interaction disfavors the occupation of contiguous shells:
only the even (odd) shells are occupied. The chemical
potential takes the value 4 =0 because there is no cost in
energy to add one electron. At n=0.5 all even (odd) shells
are occupied and all odd (even) shells are empty: that is, a
checkerboard order is established. By increasing n,
because of the Pauli principle, contiguous shells start to be
occupied; in the region 0.5<n<1 the cost in energy to
add one electron is zV. The behavior at n=0.5 is shown in
Fig. 3, where the particle densities n, and n, are plotted

as a function of the temperature. We see that at T=0,
n, =landn, =0, signaling the presence of a checkerboard

structure.
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Fig. 2. The chemical potential x is plotted as a function
of the particle density n at various temperatures.
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Fig. 3. The particle densities on the even and odd shells,
n, and n,, are given as a function of the temperature at
n=0.5.

In Fig. 4 we plot the particle densities n, and n, as

function of the total particle density n at several values of
the temperature T. The regions inside the closed curves
denote the inhomogeneous phase. When the temperature
increases the area inside the curves shrinks and, at the
critical temperature, there is a transition to the
homogeneous disordered phase characterized by
n=n, =n, and described by the straight line in Fig. 4.

The difference in the free energy AF =F, —F

inhom
between the homogeneous and inhomogeneous phases is
shown in Fig. 5 as a function of the particle density at
various temperatures. We see that the inhomogeneous
phase, when present, is always energetically favored.
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Fig. 4. The particle densities n, and n, , as functions of
the total density n at various temperatures.
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Fig. 5. The free energy difference AF = F, is
plotted as a function of the particle density at various

temperatures.

In Fig. 6 we report the behavior of the specific heat C
as a function of the temperature for n=0.4 and n=0.5.
Owing to the particle-hole symmetry, the specific heat is
invariant under the transformationn —1—n. We observe
a jump in correspondence of the critical temperature, a
clear signature of a second order phase transition.
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Fig. 6 The specific heat C is plotted as a function of the
temperature T at n=0.4, 0.5.
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Fig. 7 The derivative of the particle density with respect
to the chemical potential is plotted as a function of n for
T=0.1,0.2,0.4.

In Fig. 7 we study the thermal compressibility; we
report the behavior of the derivative of the particle density
with respect to the chemical potential as a function of n for
some values of the temperature. We observe a jump in
correspondence of the critical values of n, where the
inhomogeneous phase establishes, in agreement with the
phase diagram shown in Fig. 1. By increasing T, the height
of the peaks decreases and the corresponding position
moves towards n=0.5. At zero temperature the
compressibility vanishes at n=0.5, where the checkerboard
phase is observed.

Finally, the entropy S as a function of the particle
density for various values of the temperature is shown in
Fig. 8, and its temperature dependence is reported in Fig. 9
for n=0.4 and n=0.5. As expected, the entropy is lower in
the region of n where a charge ordered state is observed.
As a function of the temperature, the entropy exhibits a
drastic change in correspondence of the critical
temperature, in agreement with the results shown in Fig. 6
for the specific heat. This is another signature of a second
order phase transition.
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Fig. 8. The entropy S is plotted as a function the particle
density for various values of the temperature.
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Fig. 9. The entropy S is plotted against the temperature
for n=0.4 and n=0.5.

5. Concluding Remarks

In this paper we have obtained the phase diagram at
finite temperature of a system of spinless fermions,
localized on the sites of the Bethe lattice, interacting
through a repulsive nearest-neighbor potential. We have
investigated the possibility of a spontaneous breakdown of
the translational invariance and we have found that, below
a critical temperature, a transition towards a
thermodinamically stable charge ordered state occurs. The
obtained phase diagram is well supported by the behavior
of different physical quantities. Indeed, both the specific
heat and the thermal compressibility present a jump in
correspondence of the critical temperature and of the

critical values of n, respectively. Furthermore, the
behavior of the free energy and of the entropy clearly
indicates that the inhomogeneous phase is always
energetically favored.
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